Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2717, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548737

ABSTRACT

Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/microbiology , Macrolides , Phylogeny , Persistent Infection , Reinfection , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests
2.
Int J Med Microbiol ; 314: 151599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290400

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic analysis has been key to the provision of valuable data to meet both epidemiological and clinical demands. High-throughput sequencing, generally Illumina-based, has been necessary to ensure the widest coverage in global variant tracking. However, a speedier response is needed for nosocomial outbreak analyses and rapid identification of patients infected by emerging VOCs. An alternative based on nanopore sequencing may be better suited to delivering a faster response when required; however, although there are several studies offering side-by-side comparisons of Illumina and nanopore sequencing, evaluations of the usefulness in the hospital routine of the faster availability of data provided by nanopore are still lacking. RESULTS: We performed a prospective 10-week nanopore-based sequencing in MinION in a routine laboratory setting, including 83 specimens where a faster response time was necessary. The specimens analyzed corresponded to i) international travellers in which lineages were assigned to determine the proper management/special isolation of the patients; ii) nosocomial infections and health-care-worker infections, where SNP-based comparisons were required to rule in/out epidemiological relationships and tailor specific interventions iii) sentinel cases and breakthrough infections to timely report to the Public Health authorities. MinION-based sequencing was compared with the standard procedures, supported on Illumina sequencing; MinION accelerated the delivery of results (anticipating results 1-12 days) and reduced costs per sample by 28€ compared to Illumina, without reducing accuracy in SNP calling. CONCLUSIONS: Parallel integration of Illumina and nanopore sequencing strategies is a suitable solution to ensure both high-throughput and rapid response to cope with accelerating the surveillance demands of SARS-CoV-2 while also maintaining accuracy.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Nanopore Sequencing/methods , Prospective Studies , Genomics/methods
3.
Microbiol Spectr ; : e0107523, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737624

ABSTRACT

During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOCs) of particular relevance emerged. Early detection of VOCs entering a country is essential to control spread. The alert triggered by the first suspected case of the Omicron variant in Spain in a traveler arriving from South Africa in November 2021 provided a unique opportunity to evaluate four different methodological strategies tailored to rapid identification of Omicron. The different approaches were designed to respond to the different technical resources available in different settings. First, we used melting probes in RT-PCR to determine the presence of four Omicron signatures (K417N, E484A, P681H, and absence of L452R): three probes showed deviations in temperature (Tm) values relative to the reference codons (E484K-15.8°C, P681H-5.2°C, and L452R-7.2°C) and one maintained the reference value (K417N). The deviation in Tm of P681H suggested the presence of the characteristic Omicron N679K mutation in the probe hybridization region; these data pointed to the presence of Omicron alleles. Second, the presence of 29 of the 33 characteristic single nucleotide polymorphisms (SNPs) in the Omicron variant S-gene was identified by Sanger sequencing of nine amplicons. The final two strategies involved identification of 47 of the 50 non-synonymous and indel mutations attributed to Omicron by rapid nanopore whole genome sequencing (WGS) and by Illumina WGS technology. These strategies enabled us to pre-assign the first Omicron case in Spain with high certainty 2 h after receipt of RNA and to confirm it genomically 3 h later, so that the Public Health authorities could be rapidly notified. IMPORTANCE The study presents different experimental alternatives to identify new variants of concern (VOCs) of SARS-CoV-2 entering a certain population. Early detection of a new VOC is crucial for surveillance and control of spread. The objective is to provide laboratories with tools adapted to their resource capabilities that offer a sufficient level of resolution to rule out, confirm, or pre-assign the presence of a suspected VOC. The study describes four different techniques that were applied simultaneously to the first suspected Omicron case in Spain, highlighting the level of resolution and response time achieved in each case. These techniques are based on the detection of mutations in the S-gene of the virus that can easily adapt to potential emerging variants. The results of the study allow any laboratory to prepare for new alerts of SARS-CoV-2 VOCs.

4.
Euro Surveill ; 28(12)2023 03.
Article in English | MEDLINE | ID: mdl-36951787

ABSTRACT

IntroductionMycobacterium caprae is a member of the Mycobacterium tuberculosis complex (MTBC) not routinely identified to species level. It lacks specific clinical features of presentation and may therefore not be identified as the causative agent of tuberculosis. Use of whole genome sequencing (WGS) in the investigation of a family microepidemic of tuberculosis in Almería, Spain, unexpectedly identified the involvement of M. caprae.AimWe aimed to evaluate the presence of additional unidentified M. caprae cases and to determine the magnitude of this occurrence.MethodsFirst-line characterisation of the MTBC isolates was done by MIRU-VNTR, followed by WGS. Human and animal M. caprae isolates were integrated in the analysis.ResultsA comprehensive One Health strategy allowed us to (i) detect other 11 M. caprae infections in humans in a period of 18 years, (ii) systematically analyse M. caprae infections on an epidemiologically related goat farm and (iii) geographically expand the study by including 16 M. caprae isolates from other provinces. Integrative genomic analysis of 41 human and animal M. caprae isolates showed a high diversity of strains. The animal isolates' diversity was compatible with long-term infection, and close genomic relationships existed between isolates from goats on the farm and recent cases of M. caprae infection in humans.DiscussionZoonotic circulation of M. caprae strains had gone unnoticed for 18 years. Systematic characterisation of MTBC at species level and/or extended investigation of the possible sources of exposure in all tuberculosis cases would minimise the risk of overlooking similar zoonotic events.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium , One Health , Tuberculosis , Animals , Humans , Spain/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/microbiology , Mycobacterium/genetics , Genomics
5.
Microbiol Spectr ; 11(1): e0419622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602352

ABSTRACT

Despite the proven value of applying genomic data for epidemiological purposes, commonly used high-throughput sequencing formats are not adapted to the response times required to intervene and finally control outbreaks. In this study, we propose a fast alternative to whole-genome sequencing (WGS) to track relevant microbiological strains: nanopore sequencing of multiple amplicons including strain marker single nucleotide polymorphisms (SNPs). As a proof a concept, we evaluated the performance of our approach to offer a rapid response to the most recent public health global alarm, the monkeypox virus (MPXV) global outbreak. Through a multisequence alignment, a list of 42 SNPs were extracted as signature makers for this outbreak. Twenty primer pairs were designed to amplify in a multiplex PCR the regions including 22 of these SNPs. Amplicon pools were sequenced in a MinION device, and SNPs were called in real time by an in-house bioinformatic pipeline. A total of 120 specimens (95 MPXV-PCR positive, Ct values from 14 to 39) were selected. In 67.37% of the positive subset, all 22 SNPs were called. After excluding low viral load specimens, in 92% of samples ≥11 outbreak SNPs were called. No false positives were observed in any of the 25 negative specimens. The total turnaround time required for this strategy was 5 hours, and the cost per sample was 14 euros. Nanopore sequencing of multiple amplicons harboring signature SNPs escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic WGS, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control. IMPORTANCE Nanopore sequencing of multiple amplicons harboring signature single nucleotide polymorphisms (SNPs) escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic whole-genome analysis, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control.


Subject(s)
Monkeypox virus , Polymorphism, Single Nucleotide , Monkeypox virus/genetics , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Multiplex Polymerase Chain Reaction
6.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(10): 546-549, 2022 12.
Article in English | MEDLINE | ID: mdl-36464472

ABSTRACT

INTRODUCTION: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. MATERIAL AND METHODS: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. RESULTS: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. CONCLUSION: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spain/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Hospitalization
7.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 40(10): 546-549, dic. 2022. graf
Article in English | IBECS | ID: ibc-212838

ABSTRACT

Introduction: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. Material and methods: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. Results: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. Conclusion: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.(AU)


Introducción: Recientemente, ha surgido en Reino Unido una nueva variante de SARS-CoV-2, VOC202012/01, que origina el linaje B.1.1.7. Su rápida distribución en Reino Unido ha alertado a otros países a vigilar su presencia. Material y métodos: El rastreo inicial de la variante B.1.1.7 se basó en la ausencia de amplificación del gen S en el ensayo TaqPath, causado por la deleción 69/70. Todos los casos candidatos de corresponder a la variante B.1.1.7 con este criterio fueron posteriormente confirmados por secuenciación de genoma completo. Resultados: Describimos los primeros 3 casos importados de esta variante, desde Londres hasta Madrid, con la posterior transmisión domiciliaria de uno de estos casos a 3 familiares y, adicionalmente, los 2 primeros casos con la variante sin vínculo epidemiológico con Reino Unido. Uno de los casos requirió hospitalización. En todos los casos el criterio de no amplificación del gen S identificó con precisión la variante B.1.1.7, como demostró posteriormente la presencia de las 17 mutaciones marcadoras de este linaje. Conclusión: Las primeras identificaciones de la variante B.1.1.7 de SARS-CoV-2 indican un papel solapante de las introducciones independientes desde Reino Unido, con eventos de transmisión comunitaria, incluso desde los primeros momentos de la presencia de esta variante en nuestro país.(AU)


Subject(s)
Humans , Severe acute respiratory syndrome-related coronavirus , Coronavirus Infections , Pandemics , Disease Transmission, Infectious , Spain , Communicable Diseases , Microbiology
8.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(5): 262-265, 2022 05.
Article in English | MEDLINE | ID: mdl-35577445

ABSTRACT

INTRODUCTION: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed. METHODS: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population. RESULTS: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissions CONCLUSION: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Spain/epidemiology
9.
Article in English | IBECS | ID: ibc-203502

ABSTRACT

Introduction: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed.Methods: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population.Results: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissionsConclusion: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Introducción: Se han descrito «variantes de preocupación» (VOC) de SARS-CoV-2 en el Reino Unido (B.1.1.7), Sudáfrica (B.1.351) y Brasil (P.1). Entre ellas, se dispone de información más escasa para la variante P.1 y se necesitan más datos sobre su presencia global y sobre su dinámica de expansión.Métodos: Se realizó secuenciación del genoma completo de forma prospectiva de SARS-CoV-2 en viajeros procedentes de Brasil y en una selección aleatoria de casos positivos de SARS-CoV-2 de nuestra población.Resultados: En este estudio reportamos las primeras variantes de SARS-CoV-2 P.1 y P.2 exportadas desde Brasil a España. El caso infectado por la variante P.1, que solo había permanecido en Río de Janeiro, requirió hospitalización. Los 2 casos de la variante P.2 permanecieron asintomáticos. Se debe considerar una distribución más amplia para la variante P.1 más allá de la Amazonía brasileña. La exportación de la variante P.2, que porta la mutación E484K, merece asimismo atención adicional. Un mes después de la primera descripción de las importaciones de P.1 y P.2 de Brasil a Madrid, se identificaron estas variantes circulando en la comunidad, en casos sin antecedentes de viaje, e implicadas en transmisiones domiciliarias.Conclusión: La secuenciación de genoma completo de viajeros positivos para SARS-CoV-2 procedentes de Brasil nos permitió identificar las primeras importaciones de variantes P.1 y P.2 a España y su transmisión comunitaria precoz.


Subject(s)
Humans , Health Sciences , Brazil/epidemiology , Disease Transmission, Infectious/prevention & control , Betacoronavirus/genetics , Whole Genome Sequencing , Sanitary Control of Travelers , Epidemiology , Communicable Diseases
10.
Microbiol Spectr ; 10(1): e0153221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985301

ABSTRACT

COVID-19 vaccination has proven to be effective at preventing symptomatic disease but there are scarce data to fully understand whether vaccinated individuals can still behave as SARS-CoV-2 transmission vectors. Based on viral genome sequencing and detailed epidemiological interviews, we report a nosocomial transmission event involving two vaccinated health care-workers (HCWs) and four patients, one of them with fatal outcome. Strict transmission control measures, as during the prevaccination period, must be kept between HCWs and HCWs-patients in nosocomial settings. IMPORTANCE COVID-19 vaccination has proven to be effective at preventing symptomatic disease. Although some transmission events involving vaccinated cases have also been reported, scarce information is still available to fully understand whether vaccinated individuals may still behave as vectors in SARS-CoV-2 transmission events. Here, we report a SARS-CoV-2 nosocomial transmission event, supported on whole genome sequencing, in early March 2021 involving two vaccinated HCWs and four patients in our institution. Strict transmission control measures between HCWs and HCWs - patients in nosocomial settings must not be relaxed, and should be kept as strictly as during the prevaccination period.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Infection/transmission , SARS-CoV-2/immunology , COVID-19/transmission , COVID-19/virology , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/virology , Health Personnel/statistics & numerical data , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Vaccination , Whole Genome Sequencing
11.
Enferm Infecc Microbiol Clin ; 40(5): 262-265, 2022 May.
Article in English | MEDLINE | ID: mdl-34099945

ABSTRACT

Introduction: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed. Methods: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population. Results: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissions. Conclusion: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Introducción: Se han descrito «variantes de preocupación¼ (VOC) de SARS-CoV-2 en el Reino Unido (B.1.1.7), Sudáfrica (B.1.351) y Brasil (P.1). Entre ellas, se dispone de información más escasa para la variante P.1 y se necesitan más datos sobre su presencia global y sobre su dinámica de expansión. Métodos: Se realizó secuenciación del genoma completo de forma prospectiva de SARS-CoV-2 en viajeros procedentes de Brasil y en una selección aleatoria de casos positivos de SARS-CoV-2 de nuestra población. Resultados: En este estudio reportamos las primeras variantes de SARS-CoV-2 P.1 y P.2 exportadas desde Brasil a España. El caso infectado por la variante P.1, que solo había permanecido en Río de Janeiro, requirió hospitalización. Los 2 casos de la variante P.2 permanecieron asintomáticos. Se debe considerar una distribución más amplia para la variante P.1 más allá de la Amazonía brasileña. La exportación de la variante P.2, que porta la mutación E484K, merece asimismo atención adicional. Un mes después de la primera descripción de las importaciones de P.1 y P.2 de Brasil a Madrid, se identificaron estas variantes circulando en la comunidad, en casos sin antecedentes de viaje, e implicadas en transmisiones domiciliarias. Conclusión: La secuenciación de genoma completo de viajeros positivos para SARS-CoV-2 procedentes de Brasil nos permitió identificar las primeras importaciones de variantes P.1 y P.2 a España y su transmisión comunitaria precoz.

12.
Emerg Infect Dis ; 28(1): 85-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34843661

ABSTRACT

Estimates of the burden of severe acute respiratory syndrome coronavirus 2 reinfections are limited by the scarcity of population-level studies incorporating genomic support. We conducted a systematic study of reinfections in Madrid, Spain, supported by genomic viral analysis and host genetic analysis, to cleanse laboratory errors and to discriminate between reinfections and recurrences involving the same strain. Among the 41,195 cases diagnosed (March 2020-March 2021), 93 (0.23%) had 2 positive reverse transcription PCR tests (55-346 days apart). After eliminating cases with specimens not stored, of suboptimal sequence quality, or belonging to different persons, we obtained valid data from 22 cases. Of those, 4 (0.01%) cases were recurrences involving the same strain; case-patients were 39-93 years of age, and 3 were immunosuppressed. Eighteen (0.04%) cases were reinfections; patients were 19-84 years of age, and most had no relevant clinical history. The second episode was more severe in 8 cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Child, Preschool , Genomics , Humans , Polymerase Chain Reaction , Reinfection
14.
Transbound Emerg Dis ; 69(5): 3084-3089, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34687493

ABSTRACT

We report a corona virus disease (COVID-19) case with unprecedented viral complexity. In the first severe episode, two different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains (superinfection) were identified within a week. Three months after discharge, the patient was readmitted and was infected in a nosocomial outbreak with a different strain, suffering a second milder COVID-19 episode.


Subject(s)
COVID-19 , Superinfection , Animals , COVID-19/veterinary , Disease Outbreaks , Reinfection/veterinary , SARS-CoV-2 , Superinfection/veterinary
15.
mSphere ; 6(6): e0074421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908457

ABSTRACT

Detection of mixed Mycobacterium tuberculosis (MTB) infections is essential, particularly when resistance mutations are present in minority bacterial populations that may affect patients' disease evolution and treatment. Whole-genome sequencing (WGS) has extended the amount of key information available for the diagnosis of MTB infection, including the identification of mixed infections. Having genomic information at diagnosis for early intervention requires carrying out WGS directly on the clinical samples. However, few studies have been successful with this approach due to the low representation of MTB DNA in sputa. In this study, we evaluated the ability of a strategy based on specific MTB DNA enrichment by using a newly designed capture platform (MycoCap) to detect minority variants and mixed infections by WGS on controlled mixtures of MTB DNAs in a simulated sputum genetic background. A pilot study was carried out with 12 samples containing 98% of a DNA pool from sputa of patients without MTB infection and 2% of MTB DNA mixtures at different proportions. Our strategy allowed us to generate sequences with a quality equivalent to those obtained from culture: 62.5× depth coverage and 95% breadth coverage (for at least 20× reads). Assessment of minority variant detection was carried out by manual analysis and allowed us to identify heterozygous positions up to a 95:5 ratio. The strategy also automatically distinguished mixed infections up to a 90:10 proportion. Our strategy efficiently captures MTB DNA in a nonspecific genetic background, allows detection of minority variants and mixed infections, and is a promising tool for performing WGS directly on clinical samples. IMPORTANCE We present a new strategy to identify mixed infections and minority variants in Mycobacterium tuberculosis by whole-genome sequencing. The objective of the strategy is the direct detection in patient sputum; in this way, minority populations of resistant strains can be identified at the time of diagnosis, facilitating identification of the most appropriate treatment for the patient from the first moment. For this, a platform for capturing M. tuberculosis-specific DNA was designed to enrich the clinical sample and obtain quality sequences.


Subject(s)
DNA, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Sputum/microbiology , Whole Genome Sequencing , DNA, Bacterial/isolation & purification , Genome, Bacterial , Humans , Pilot Projects , Tuberculosis/diagnosis , Tuberculosis/microbiology
16.
Microbiol Spectr ; 9(3): e0112821, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34787494

ABSTRACT

The SARS-CoV-2 variant of concern (VOC) Delta (B.617.2 lineage) displaced the predominant VOC Alpha (B.1.1.7 lineage) in the United Kingdom. In Madrid, recent start of the decline of predominant VOC Alpha suggested an equivalent phenomenon. However, 11 different variants, none overrepresented in frequency, occupied progressively over a period of 7 weeks the niche previously dominated by VOC Alpha. Only after these 7 weeks, VOC Delta started to emerge. Viral competition due to the entry of VOC Delta is not the major force driving the start of VOC Alpha decline in Madrid. IMPORTANCE Our data indicate that the dynamics of SARS-CoV-2 VOCs turnover in our setting differ from those proposed for other countries. A systematic genomic analysis, updated on a weekly basis, of representative randomly selected samples of SARS-CoV-2 circulating variants allowed us to define a lapse of 7 weeks between the start of VOC Alpha decline and the final emergence of VOC Delta. During this period, VOC Alpha showed a sustained decline, while 11 VOCs, variants of interest (VOIs), and other identified variants, none overrepresented, occupied the niche left by VOC Alpha. Only after these 7 weeks, emergence of VOC Delta occurred, indicating that viral competition involving VOC Delta was not the exclusive direct driving force behind the starting of VOC Alpha decline.


Subject(s)
COVID-19/virology , Phylogeny , SARS-CoV-2/classification , Genomics , Humans , Mutation , SARS-CoV-2/genetics , Spain , Whole Genome Sequencing
17.
Wellcome Open Res ; 6: 121, 2021.
Article in English | MEDLINE | ID: mdl-34095513

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

18.
Microbiol Spectr ; 9(2): e0081621, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643437

ABSTRACT

Reverse transcription-PCRs (RT-PCRs) targeting SARS-CoV-2 variant of concern (VOC) mutations have been developed to simplify their tracking. We evaluated an assay targeting E484K/N501Y to identify B.1.351/P1. Whole-genome sequencing (WGS) confirmed only 72 (59.02%) of 122 consecutive RT-PCR P.1/B.1.351 candidates. Prescreening RT-PCRs must target a wider set of mutations, updated from WGS data from emerging variants.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Diagnostic Errors/statistics & numerical data , Genome, Viral/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , Whole Genome Sequencing
19.
J Infect Dis ; 224(5): 788-792, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34107025

ABSTRACT

A 77-year-old man (case R) with previous diagnosis of a mild COVID-19 episode was hospitalized 35 days later. On day 23 postadmission, he developed a second COVID-19 episode, now severe, and finally died. Initially, case R's COVID-19 recurrence was interpreted as a reinfection due to the exposure to a SARS-CoV-2 RT-PCR-positive roommate. However, whole-genome sequencing indicated that case R's recurrence corresponded to a reactivation of the strain involved in his first episode. Case R's reactivation had major consequences, leading to a more severe episode, and causing subsequent transmission to another 2 hospitalized patients, 1 of them with fatal outcome.


Subject(s)
COVID-19/diagnosis , Reinfection/diagnosis , Reinfection/virology , Aged , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Humans , Male , Recurrence , Reinfection/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...